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Crack Detection in Armor Plates Using 
Ultrasonic Techniques 

Thomas J. Meitzler1, Gregory Smith2, Michelle Charbeneau2, Euijung Sohn2,  
Mary Bienkowski2, Ivan Wong2   and Allen H. Meitzler3

Abstract— A method of using piezoelectric lead 
zirconate titanate (PZT) transducers to characterize the 
vibrational modes of Vehicle Body Armor Support System 
(VBASS) plates and its preliminary results are presented.  
The amplitude of the vibrational modes of undamaged 
plates are compared to the vibrational mode amplitudes of 
damaged plates and shown to be clearly different.  Plates 
for testing are damaged either by a blunt impact to the 
ceramic plate surface or cracked using a machine shop 
press.  Data from these tests will be used to design 
prototype hand-held devices for the nondestructive testing 
(NDT) of plate structural integrity in the field. VBASS 
plates are used as proof-of-principle samples in the 
absence of vest body armor samples. 
 

Index Terms— armor plates, ceramic, NDT, PZT 
transducers  

I. INTRODUCTION 

VARIOUS types of body armor comprised of Silicon 
Carbide (SiC) ceramic plates are in wide-spread use by 
the US military because of its relatively light weight and 
the ballistic protection offered to soldiers.  The 
protection is diminished if the plate’s integrity is 
compromised.  Any number of things can induce cracks 
in the SiC plates, therefore it is important to inspect 
them after manufacturing and prior to shipping.  There 
have been efforts to inspect VBASS plates using a fixed 
laboratory based device [1], however, this is inefficient 
and not always possible.  A hand-held device used in 
ascertaining the health of body armor plates in the field 
is being developed. 
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To achieve this, PZT transducers were used to excite 
flexural mode waves in the VBASS ceramic armor 

plates and to measure the resulting transmission signal 
of these plates.  The authors found that there is a clear 
difference between damaged and undamaged plates.  
Fig. 1 below shows the structural composition of a 
VBASS plate. 
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II. METHODOLOGY 
he contact between the piezoelectric PZT 
d the plate, a small area of the canvas was 
 with a thin layer of the adhesive used to 
s on the plate.  The transducers were then 
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to vibrate.  This movement excites a mechanical wave 
in the plate which forces the transducer on the right to 
vibrate and genera These signals 

.  

Plat
with th
modes of damage studied were; 1
blunt impact damage, 3. crack induced
five-ton press.  All the plates were im
house x-ray machine used for NDT.  The plate in Fig. 3 
below i and the plate in Fig. 4 is 
the plate with cracks and a bullet hole

-house armor team members have indicated that the 
case of a plate with a clean bullet hole is very rare, 
usually there are crack  a penetration of 
th

In Fig. 5, the topmost waveform is the input voltage at a 
ency of the plates, which is close to 63 
ves the PZT transducers, the middle 

form is the resonant vibration of the undamaged 
ound 63 kHz and the  is the 

resonant vibration of the plate with the cracks and bullet 
hole in it shown in Fig. 4. 

ere is a difference in the 
hape of the voltage amplitude wave, indicating 

te electrical signals.  
are measured using an oscilloscope.  The basic idea of 
this technique is to use the signal generator to sweep 
through a frequency range of a few hundred kHz to 
characterize the response of undamaged plates and then 
to use that as a baseline to determine the condition of 
other plates.  Undamaged plates have unique elements 

 changesin their outputs that are affected by structural
When these unique elements are altered it indicates a 
change in structure or damage. 
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F
s
different plate vibrational resonances.  Fig. 6 
demonstrates a VBASS plate that has only an internal 
hairline crack. The key seen in Fig. 6 was used as an 
indicator of where the crack is located within the plate 
because the crack is hard to see with the naked eye. 
 

 
Fig.  5: Oscillogram of input and output voltages 
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Fig.  2: Schematic of the te circuit with a cerast mic plate

Fig.  3: X-ray image of undamaged plate

Fig.  4: X-ray image of damaged plate 
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In Fig. 7 above, the topmost waveform is the input 
signal at a different resonant frequency of the plates, 
which is close to 51 kHz, that drives the PZT 
transducer, the middle waveform is the resonant 
vibration of the undamaged plate at around 51 kHz and 
the lower waveform is one of the resonant vibrations of 
the plate with the hairline crack in it shown in Fig. 6. 
Again there is a difference in the responses of the 
cracked and un-cracked plates. 
 
The chart
measured using 

ng rectangular 
ansducers.  The charts in Fig’s 10 and 11 correspond 

t 

e 

e 

Fig.  7: Oscillogram of input and output signals using the
hairline cracked VBASS plate 

Fig.  6: X-ray image of a VBASS plate with a hairline crack

Charts in Fig’s 8 and 9 are included because at the tim
of the writing of this paper, the only cracked plate 
available was with the ring transducers.  Using the 
rectangular transducers, we found that the rectangular 
PZT transducer output voltages to be higher in 
amplitude then the ring transducers and therefore it’s 
possible to see more vibrational harmonics. 
 

s in Fig.’s 8 and 9 correspond to voltages 
ring PZT transducers attached to the 

cracked and un-cracked plates.  Fig.’s 10 and 11 
orrespond to measurements made usic

tr
to the same plate that was measured first as an 
undamaged plate and then later measured again after i
was damaged by striking it a couple of times with a 
hammer.  Again, there is a vibrational frequency 
difference between the damaged and undamaged plate.  
The ring transducers were used in the beginning of our 
tests because of their availability, and later on we 
switched to rectangular transducers once an appropriat
supplier was found. 
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Resonance Strength versus input frequency (Plate 7 Undamaged Plate)
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Resonance Strength versus input frequency (Plate 7 Damaged Plate)
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Fig. 11: PZT transducer voltage vs.  frequency for damaged plate 
 
Fig.’s 12, 13, and 14 are the x-ray image of a plate with 
a large crack though the center of the plate, and the 
graphs of the undamaged and cracked PZT voltages 
versus frequency. The rectangular PZT transducers are 
shown on the edges of the plate. 
 

 
Fig. 12: X-ray image of VBASS plate3 with a crack through the center 
of the plate 
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ig. 13: PZT transducer voltage versus frequency for damaged plate 

 
F

Resonance Strength versus input frequency (Plate 3 Damaged Plate)
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4: PZT transducer voltage for the cracked plate using 

 transducers 
 

IV.  ANALYSIS 
 

The natural vibration mode frequencies of the plate 
under study were computed and compared to the 
measurements made with the PZT transducers.  Calling 
“w” the plate deformation, the equation of motion for a 
plate under various boundary conditions is derived by 
Leissa [2, 7] and is, 
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and E is Young’s modulus, h is the plate thickness, ν is 
Poisson’s ratio, ρ is the mass density per unit area of the 
plate, 2∇ is the three-dimensional La
and t is the time.  A table of the cons

o  provided bel w in Tab

placian operator, 
tants and physical 

dimensions of the plate that are used in the computation 
f the resonant frequencies are o le 

I. The solutions to the equation of motion are the 
graphed in 

twenty kHz. 
 

frequencies of vibration of the plate and are 
Fig. 15.  As can be seen in the chart of Fig. 15, there are 
groups of resonant frequencies approximately every 
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In Fig. 13 the group of frequencies around 70 kHz 
corresponds with the fundamental resonant frequency of 
the PZT transducer at 69 KHz which was determined 
from admittance measurements of un-bonded 
transducers. 
 

TABLE I: PHYSICAL CONSTANT AND PLATE VALUES [3]
 

Young’s Modulus 401.38 GPa 
Poisson’s Ratio 0.1875 
  
Plate length, a 33 cm 
Plate width,  b 17.8 cm 
Plate depth, d 2.4 cm 
Volume 660 cm3

Density 4303 kg/m3
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Fig. 15: Chart of computed frequencies of the VBASS plate 
 

V. FUTURE EFFORTS 
One of the goals of this research is to develop a device 
that can test for the existence of cracks in armor plates 
in the field, away from laboratories or test equipment. 
The prototype device is based on the “impact method” 
and a schematic of the prototype is shown in Fig. 16.  
(An excellent review of the ultrasonic “impact method” 
is provided in the Evans [4] patent as well as other texts 
on NDT [5,6].)  This device would be held over the 
armor sample and pushed against the plate to release the 

lunger.  This action will send a shockwave through he 
lat de 
e de tly 
e device is attached to an oscilloscope for signal 

analysis.  In the f ave an 

he 
sponse of ceramic armor plates at a range of 

BASS plates can easily be identified by comparing its 
oltage waveforms against that of an undamaged plate 
sing the bonded transducer approach.  The authors 
ave recently demonstrated a working prototype of a 
ortable, handheld test unit. Research and development 
 currently underway to develop more robust hand-held 
evices for armor crack detection in the field based on 
e data e. 
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[5.] ructive 

Testing, John Wiley and Sons, New York, 1987. 
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ation, McGraw-Hill, New York, 2001. 

J. S  
s Identification by using Piezoelectric 

Sensors,” Smart Structures and Materials 2000, 
SPIE Vol. 3985 (2000). 

 

h transducer 
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 t
e which can be picked up by a ring transducer insi

vice for measurement and comparison.  Presenth
th

uture, it is planned to h
integrated MEMS device collect and perform the 
required data and signal analysis.   
 

Currently a hand-held test unit is being developed that 
will implement the continuous signal transmission 
testing that is outlined in the beginning of this paper. 
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VI. Conclusions 
PZT transducers can be used to characterize t
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frequencies.  The presence of a hairline crack in the 
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